{ "id": "math/0312435", "version": "v1", "published": "2003-12-23T22:01:03.000Z", "updated": "2003-12-23T22:01:03.000Z", "title": "Shimura curves embedded in Igusa's threefold", "authors": [ "Victor Rotger" ], "comment": "To appear in Modular curves and Abelian varieties, Progress in Mathematics 224 Birkhauser, (2003), 263-273", "categories": [ "math.NT", "math.AG" ], "abstract": "Let O be a maximal order in a totally indefinite quaternion algebra over a totally real number field. In this note we study the locus Q_O of quaternionic multiplication by O in the moduli space A_g of principally polarized abelian varieties of even dimension g with particular emphasis in the two-dimensional case. We describe Q_O as a union of Atkin-Lehner quotients of Shimura varieties and we compute the number of irreducible components of Q_O in terms of class numbers of CM-fields.", "revisions": [ { "version": "v1", "updated": "2003-12-23T22:01:03.000Z" } ], "analyses": { "subjects": [ "11G18", "14G35" ], "keywords": [ "shimura curves", "igusas threefold", "totally indefinite quaternion algebra", "totally real number field", "moduli space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....12435R" } } }