{ "id": "math/0312393", "version": "v2", "published": "2003-12-22T18:36:13.000Z", "updated": "2004-04-12T19:12:20.000Z", "title": "A Lower Bound for the Canonical Height on Abelian Varieties over Abelian Extensions", "authors": [ "Matthew Baker", "Joseph Silverman" ], "comment": "v2 (23 pages), to appear in Mathematical Research Letters. Revised statement and proof of Proposition 7.3, added Lemma 7.9. Some other small revisions made as well", "categories": [ "math.NT", "math.AG" ], "abstract": "Let A be an abelian variety defined over a number field K, and consider the canonical height function attached to a symmetric ample line bundle L on A. We prove that there is a positive lower bound C (depending on A, K, and L) for the canonical height of non-torsion points on A defined over the maximal abelian extension K^ab of K.", "revisions": [ { "version": "v2", "updated": "2004-04-12T19:12:20.000Z" } ], "analyses": { "keywords": [ "abelian variety", "symmetric ample line bundle", "maximal abelian extension", "non-torsion points", "positive lower bound" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....12393B" } } }