{ "id": "math/0312301", "version": "v1", "published": "2003-12-16T02:25:38.000Z", "updated": "2003-12-16T02:25:38.000Z", "title": "Intersection of ACM-curves in P^3", "authors": [ "R. M. Miro-Roig", "K. Ranestad" ], "comment": "15 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "In this note we address the problem of determining the maximum number of points of intersection of two arithmetically Cohen-Macaulay curves in $\\PP^3$. We give a sharp upper bound for the maximum number of points of intersection of two irreducible arithmetically Cohen-Macaulay curves $C_t$ and $C_{t-r}$ in $\\PP^3$ defined by the maximal minors of a $t \\times (t+1)$, resp. $(t-r) \\times (t-r+1)$, matrix with linear entries, provided $C_{t-r}$ has no linear series of degree $d\\leq{{t-r+1}\\choose 3}$ and dimension $n\\geq t-r$.", "revisions": [ { "version": "v1", "updated": "2003-12-16T02:25:38.000Z" } ], "analyses": { "subjects": [ "14C17", "14H45" ], "keywords": [ "intersection", "maximum number", "acm-curves", "sharp upper bound", "linear series" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....12301M" } } }