{ "id": "math/0312199", "version": "v2", "published": "2003-12-10T02:17:42.000Z", "updated": "2004-01-31T23:43:11.000Z", "title": "Spectral Characters of Finite-Dimensional Representations of Affine Algebras", "authors": [ "Vyjayanthi Chari", "Adriano Moura" ], "comment": "More concise proofs for Propositions 1.2 and 2.4 added. To appear in Journal of Algebra", "categories": [ "math.RT" ], "abstract": "We introduce the notion of a spectral character for finite-dimensional representations of affine algebras. These can be viewed as a suitable q=1 limit of the elliptic characters defined by Etingof and Moura for quantum affine algebras. We show that these characters determine blocks of the category of finite-dimensional modules for affine algebras. To do this we use the Weyl modules defined by Chari and Pressley and some indecomposable reducible quotient of the Weyl modules.", "revisions": [ { "version": "v2", "updated": "2004-01-31T23:43:11.000Z" } ], "analyses": { "subjects": [ "17B67" ], "keywords": [ "finite-dimensional representations", "spectral character", "weyl modules", "characters determine blocks", "quantum affine algebras" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....12199C" } } }