{ "id": "math/0312176", "version": "v2", "published": "2003-12-09T01:00:55.000Z", "updated": "2004-08-21T04:55:21.000Z", "title": "Intrinsic knotting and linking of almost complete partite graphs", "authors": [ "Thomas W. Mattman", "Ryan Ottman", "Matt Rodrigues" ], "comment": "v2: 20 pages, 10 figures, substantial expansion of version 1", "categories": [ "math.GT" ], "abstract": "We classify graphs that are 0, 1, or 2 edges short of being complete partite graphs with respect to intrinsic linking and intrinsic knotting. In addition, we classify intrinsic knotting of graphs on 8 vertices. For graphs in these families, we verify a conjecture presented in Adams' \"The Knot Book\": If a vertex is removed from an intrinsically knotted graph, one obtains an intrinsically linked graph.", "revisions": [ { "version": "v2", "updated": "2004-08-21T04:55:21.000Z" } ], "analyses": { "subjects": [ "05C10", "57M15" ], "keywords": [ "complete partite graphs", "intrinsic knotting", "edges short", "knot book", "classify graphs" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....12176M" } } }