{ "id": "math/0312032", "version": "v1", "published": "2003-12-01T16:43:57.000Z", "updated": "2003-12-01T16:43:57.000Z", "title": "On the homotopy types of compact kaehler and complex projective manifolds", "authors": [ "Claire Voisin" ], "comment": "To appear in Inventiones Math", "categories": [ "math.AG", "math.SG" ], "abstract": "We show that in every dimension greater than or equal to 4, there exist compact Kaehler manifolds which do not have the homotopy type of projective complex manifolds. Thus they a fortiori are not deformation equivalent to a projective manifold, which solves negatively Kodaira's problem. We give both non simply connected (of dimension at least 4) and simply connected (of dimension at least 6) such examples.", "revisions": [ { "version": "v1", "updated": "2003-12-01T16:43:57.000Z" } ], "analyses": { "keywords": [ "complex projective manifolds", "homotopy type", "compact kaehler manifolds", "projective complex manifolds", "deformation equivalent" ], "publication": { "doi": "10.1007/s00222-003-0352-1", "journal": "Inventiones Mathematicae", "year": 2004, "month": "Aug", "volume": 157, "number": 2, "pages": 329 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004InMat.157..329V" } } }