{ "id": "math/0311368", "version": "v1", "published": "2003-11-21T01:04:18.000Z", "updated": "2003-11-21T01:04:18.000Z", "title": "On the Ramification of Hecke Algebras at Eisenstein Primes", "authors": [ "Frank Calegari", "Matthew Emerton" ], "comment": "39 pages", "categories": [ "math.NT" ], "abstract": "Using the modularity technique of Wiles, we study the Hecke algebra of weight 2 and prime level N localized at the Eisenstein primes. On the way, we recover some results of Mazur (\"Modular Curves and the Eisenstein Ideal\") from a deformation theoretic point of view. Combining some of our results with a theorem of Merel, we obtain new information about the p-part of the class groups of Q(N^(1/p)), where p and N are prime, and N = 1 mod p.", "revisions": [ { "version": "v1", "updated": "2003-11-21T01:04:18.000Z" } ], "analyses": { "subjects": [ "11F80", "11R29" ], "keywords": [ "eisenstein primes", "hecke algebra", "ramification", "deformation theoretic point", "class groups" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11368C" } } }