{ "id": "math/0311360", "version": "v2", "published": "2003-11-20T20:57:50.000Z", "updated": "2003-11-20T21:13:16.000Z", "title": "Interpolating sequences for the Bergman space and the $\\bar\\partial$-equation in weighted $L^p$", "authors": [ "Daniel H. Luecking" ], "comment": "23pages", "categories": [ "math.CV" ], "abstract": "The author showed that a sequence in the unit disk is a zero sequence for the Bergman space $A^p$ if and only if a certain weighted space $L^p(W}$ contains a nontrivial analytic function. In this paper it is shown that the sequence is an interpolating sequence for $A^p$ if and only if it is separated in the hyperbolic metric and the $\\bar\\partial$-equation $(1 - |z|^2)\\bar\\partial u = f$ has a solution $u$ belonging to $L^p(W)$ for every $f$ in $L^p(W)$.", "revisions": [ { "version": "v2", "updated": "2003-11-20T21:13:16.000Z" } ], "analyses": { "subjects": [ "30H05", "30E05", "46E20" ], "keywords": [ "bergman space", "interpolating sequence", "nontrivial analytic function", "hyperbolic metric", "unit disk" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11360L" } } }