{ "id": "math/0311335", "version": "v1", "published": "2003-11-19T20:12:19.000Z", "updated": "2003-11-19T20:12:19.000Z", "title": "Weyl's law for the cuspidal spectrum of SL(n)", "authors": [ "Werner Mueller" ], "comment": "56 pages", "categories": [ "math.RT", "math.NT", "math.SP" ], "abstract": "Let $\\Gamma$ be a principal congruence subgroup of $SL_n(Z)$ and let $\\sigma$ be an irreducible representation of SO(n). Let $N(T,\\sigma)$ be the counting function of the eigenvalues of the Casimir operator acting in the space of cusp forms for $\\Gamma$ which transform under SO(n) according to $\\sigma$. We prove that the counting function $N(T,\\sigma)$ satisfies Weyl's law as $T\\to\\infty$. Especially this implies that there exist infinitely many cusp forms for the full modular group $SL_n(Z)$.", "revisions": [ { "version": "v1", "updated": "2003-11-19T20:12:19.000Z" } ], "analyses": { "subjects": [ "22E40", "58G25" ], "keywords": [ "cuspidal spectrum", "cusp forms", "full modular group", "principal congruence subgroup", "satisfies weyls law" ], "note": { "typesetting": "TeX", "pages": 56, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11335M" } } }