{ "id": "math/0311084", "version": "v1", "published": "2003-11-06T16:50:27.000Z", "updated": "2003-11-06T16:50:27.000Z", "title": "Knot Floer homology of (1,1)-knots", "authors": [ "Hiroshi Goda", "Hiroshi Matsuda", "Takayuki Morifuji" ], "comment": "17 pages, 17 figures", "categories": [ "math.GT" ], "abstract": "We present a combinatorial method for a calculation of knot Floer homology with Z-coefficient of (1,1)-knots, and then demonstrate it for non-alternating (1,1)-knots with ten crossings and the pretzel knots of type (-2,m,n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.", "revisions": [ { "version": "v1", "updated": "2003-11-06T16:50:27.000Z" } ], "analyses": { "subjects": [ "57M25", "57Q60" ], "keywords": [ "knot floer homology", "pretzel knots", "combinatorial method", "calculations determine" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11084G" } } }