{ "id": "math/0311015", "version": "v1", "published": "2003-11-03T03:28:15.000Z", "updated": "2003-11-03T03:28:15.000Z", "title": "A compact group which is not Valdivia compact", "authors": [ "Wieslaw Kubiƛ", "Vladimir Uspenskij" ], "comment": "4 pages", "journal": "Proc. Amer. Math. Soc. 133 (2005), 2483--2487", "doi": "10.1090/S0002-9939-05-07797-X", "categories": [ "math.GN" ], "abstract": "A compact space $K$ is {\\em Valdivia compact} if it can be embedded in a Tikhonov cube $I^A$ in such a way that the intersection $K\\cap\\Sigma$ is dense in $K$, where $\\Sigma$ is the sigma-product (= the set of points with countably many non-zero coordinates). We show that there exists a compact connected Abelian group of weight $\\o_1$ which is not Valdivia compact, and deduce that Valdivia compact spaces are not preserved by open maps.", "revisions": [ { "version": "v1", "updated": "2003-11-03T03:28:15.000Z" } ], "analyses": { "subjects": [ "54D30", "54C15", "22C05" ], "keywords": [ "compact group", "compact connected abelian group", "valdivia compact spaces", "non-zero coordinates", "tikhonov cube" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....11015K" } } }