{ "id": "math/0310461", "version": "v1", "published": "2003-10-29T15:16:37.000Z", "updated": "2003-10-29T15:16:37.000Z", "title": "A uniformly distributed parameter on a class of lattice paths", "authors": [ "David Callan" ], "comment": "LateX 8 pages", "categories": [ "math.CO" ], "abstract": "Let G_n denote the set of lattice paths from (0,0) to (n,n) with steps of the form (i,j) where i and j are nonnegative integers, not both 0. Let D_n denote the set of paths in G_n with steps restricted to (1,0), (0,1), (1,1), so-called Delannoy paths. Stanley has shown that | G_n | = 2^(n-1) | D_n | and Sulanke has given a bijective proof. Here we give a simple parameter on G_n that is uniformly distributed over the 2^(n-1) subsets of [n-1] = {1,2,...,n-1} and takes the value [n-1] precisely on the Delannoy paths.", "revisions": [ { "version": "v1", "updated": "2003-10-29T15:16:37.000Z" } ], "analyses": { "subjects": [ "05A15" ], "keywords": [ "lattice paths", "uniformly distributed parameter", "delannoy paths", "simple parameter", "nonnegative integers" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10461C" } } }