{ "id": "math/0310399", "version": "v5", "published": "2003-10-24T23:45:09.000Z", "updated": "2005-07-09T19:43:59.000Z", "title": "Deformation Quantization in Algebraic Geometry", "authors": [ "Amnon Yekutieli" ], "comment": "AMSLaTeX, 41 pages, XYpic and eps figures. Final version; to appear in Advances Math (Michael Artin issue). Several new technical results and remarks in this version", "categories": [ "math.AG", "math.QA", "math.RA" ], "abstract": "We study deformation quantizations of the structure sheaf O_X of a smooth algebraic variety X in characteristic 0. Our main result is that when X is D-affine, any formal Poisson structure on X determines a deformation quantization of O_X (canonically, up to gauge equivalence). This is an algebro-geometric analogue of Kontsevich's celebrated result.", "revisions": [ { "version": "v5", "updated": "2005-07-09T19:43:59.000Z" } ], "analyses": { "subjects": [ "53D55", "14D15", "13D10", "16S80" ], "keywords": [ "algebraic geometry", "study deformation quantizations", "smooth algebraic variety", "formal poisson structure", "main result" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10399Y" } } }