{ "id": "math/0310376", "version": "v1", "published": "2003-10-23T14:35:40.000Z", "updated": "2003-10-23T14:35:40.000Z", "title": "Monomial invariants in codimension two", "authors": [ "A. Alzati", "A. Tortora" ], "comment": "LaTeX, 8 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "We define the monomial invariants of a projective variety $Z$; they are invariants coming from the generic initial ideal of $Z$. Using this notion, we generalize a result of Cook: If $Z$ is an integral variety of codimension two, satisfying the additional hypothesis $s_Z=s_\\Gamma,$ then its monomial invariants are connected.", "revisions": [ { "version": "v1", "updated": "2003-10-23T14:35:40.000Z" } ], "analyses": { "subjects": [ "14M07" ], "keywords": [ "monomial invariants", "codimension", "generic initial ideal", "integral variety", "additional hypothesis" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10376A" } } }