{ "id": "math/0310231", "version": "v1", "published": "2003-10-16T00:33:48.000Z", "updated": "2003-10-16T00:33:48.000Z", "title": "Oppenheim conjecture for pairs consisting of a linear form and a quadratic form", "authors": [ "Alexander Gorodnik" ], "comment": "To be published in Trans. Amer. Math. Soc., 17 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "Let Q be a nondegenerate quadratic form, and L is a nonzero linear form of dimension d>3. As a generalization of the Oppenheim conjecture, we prove that the set {(Q(x),L(x)):x\\in Z^d} is dense in R^2 provided that Q and L satisfy some natural conditions. The proof uses dynamics on homogeneous spaces of Lie groups.", "revisions": [ { "version": "v1", "updated": "2003-10-16T00:33:48.000Z" } ], "analyses": { "subjects": [ "37A17", "11J13", "11H55" ], "keywords": [ "oppenheim conjecture", "pairs consisting", "nonzero linear form", "nondegenerate quadratic form", "natural conditions" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10231G" } } }