{ "id": "math/0310215", "version": "v1", "published": "2003-10-15T09:21:38.000Z", "updated": "2003-10-15T09:21:38.000Z", "title": "Poincare series and zeta function for an irreducible plane curve singularity", "authors": [ "Jan Stevens" ], "comment": "7 pages", "categories": [ "math.AG" ], "abstract": "The Poincare series of an irreducible plane curve singularity equals the zeta function of its monodromy, by a result of Campillo, Delgado and Gusein-Zade. We derive this fact from a formula of Ebeling and Gusein-Zade relating the Poincare series of a quasi-homogeneous complete intersection singularity to the Saito dual of a product of zeta functions.", "revisions": [ { "version": "v1", "updated": "2003-10-15T09:21:38.000Z" } ], "analyses": { "subjects": [ "14B05", "32S40" ], "keywords": [ "poincare series", "zeta function", "irreducible plane curve singularity equals", "quasi-homogeneous complete intersection singularity" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10215S" } } }