{ "id": "math/0310151", "version": "v3", "published": "2003-10-10T17:00:48.000Z", "updated": "2004-06-01T17:52:59.000Z", "title": "A Connes-amenable, dual Banach algebra need not have a normal, virtual diagonal", "authors": [ "Volker Runde" ], "comment": "16 pages; some more, minor revisions", "journal": "Trans. Amer. Math. Soc. 358 (2006), 391-402", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $G$ be a locally compact group, and let $WAP(G)$ denote the space of weakly almost periodic functions on $G$. We show that, if $G$ is a $[SIN]$-group, but not compact, then the dual Banach algebra $WAP(G)^\\ast$ does not have a normal, virtual diagonal. Consequently, whenever $G$ is an amenable, non-compact $[SIN]$-group, $WAP(G)^\\ast$ is an example of a Connes-amenable, dual Banach algebra without a normal,virtual diagonal.", "revisions": [ { "version": "v3", "updated": "2004-06-01T17:52:59.000Z" } ], "analyses": { "subjects": [ "22A15", "22A20", "43A07", "43A10", "43A60", "46H20", "46H25", "46M18", "46M20" ], "keywords": [ "dual banach algebra", "virtual diagonal", "connes-amenable", "locally compact group", "periodic functions" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10151R" } } }