{ "id": "math/0310144", "version": "v1", "published": "2003-10-10T10:21:16.000Z", "updated": "2003-10-10T10:21:16.000Z", "title": "A Generalization of Repetition Threshold", "authors": [ "Lucian Ilie", "Jeffrey Shallit" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold: the smallest real number alpha such that there exists an infinite word over a k-letter alphabet that avoids beta-powers for all beta>alpha. We generalize this concept to include the lengths of the avoided words. We give some conjectures supported by numerical evidence and prove one of these conjectures.", "revisions": [ { "version": "v1", "updated": "2003-10-10T10:21:16.000Z" } ], "analyses": { "subjects": [ "68R15" ], "keywords": [ "repetition threshold", "generalization", "smallest real number alpha", "k-letter alphabet", "conjectures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10144I" } } }