{ "id": "math/0310122", "version": "v1", "published": "2003-10-08T18:55:47.000Z", "updated": "2003-10-08T18:55:47.000Z", "title": "Characteristic-free bounds for the Castelnuovo-Mumford regularity", "authors": [ "Giulio Caviglia", "Enrico Sbarra" ], "comment": "12 pages", "categories": [ "math.AC", "math.AG" ], "abstract": "We study bounds for the Castelnuovo-Mumford regularity of homogeneous ideals in a polynomial ring in terms of the number of variables and the degree of the generators. In particular our aim is to give a positive answer to a question posed by Bayer and Mumford, by showing that the known upper bound in characteristic zero holds true also in positive characteristic. We first analyze Giusti's proof, which provides the result in characteristic 0, giving some insight on the combinatorial properties needed in that context. For the general case we provide a new argument which employs Bayer and Stillman criterion for detecting regularity.", "revisions": [ { "version": "v1", "updated": "2003-10-08T18:55:47.000Z" } ], "analyses": { "subjects": [ "13D02", "13P10", "13D45" ], "keywords": [ "castelnuovo-mumford regularity", "characteristic-free bounds", "first analyze giustis proof", "characteristic zero holds true", "upper bound" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10122C" } } }