{ "id": "math/0310086", "version": "v1", "published": "2003-10-07T01:40:50.000Z", "updated": "2003-10-07T01:40:50.000Z", "title": "Differentiability of functions of matrices", "authors": [ "Yury Grabovsky", "Omar Hijab", "Igor Rivin" ], "comment": "12 pages", "categories": [ "math.FA", "math.RT" ], "abstract": "Given a function on diagonal matrices, there is a unique way to extend this to an invariant (by conjugation) function on symmetric matrices. We show that the extension preserves regularity -- that is, if the original function is k times differentiable so is the extension (likewise for analyticity and the class k+alpha).", "revisions": [ { "version": "v1", "updated": "2003-10-07T01:40:50.000Z" } ], "analyses": { "subjects": [ "15A18", "15A42", "47A55" ], "keywords": [ "differentiability", "extension preserves regularity", "diagonal matrices", "unique way", "symmetric matrices" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10086G" } } }