{ "id": "math/0310005", "version": "v1", "published": "2003-10-01T02:57:57.000Z", "updated": "2003-10-01T02:57:57.000Z", "title": "Quantum integers and cyclotomy", "authors": [ "Alexander Borisov", "Yang Wang", "Melvyn B. Nathanson" ], "comment": "11 pages; LaTex", "categories": [ "math.NT", "math.QA" ], "abstract": "A sequence of functions {f_n(q)}_{n=1}^{\\infty} satisfies the functional equation for multiplication of quantum integers if f_{mn}(q) = f_m(q)f_n(q^m) for all positive integers m and n. This paper describes the structure of all sequences of rational functions with rational coefficients that satisfy this functional equation.", "revisions": [ { "version": "v1", "updated": "2003-10-01T02:57:57.000Z" } ], "analyses": { "subjects": [ "39B05", "81R50", "11R18", "11T22", "11B13" ], "keywords": [ "quantum integers", "functional equation", "rational coefficients", "rational functions" ], "note": { "typesetting": "LaTeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.....10005B" } } }