{ "id": "math/0309374", "version": "v2", "published": "2003-09-23T07:02:49.000Z", "updated": "2003-12-11T08:26:39.000Z", "title": "On the irreducibility of multivariate subresultants", "authors": [ "Laurent Busé", "Carlos D'Andrea" ], "comment": "Updated version, 4 pages, to appear in CRAS", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $P_1,...,P_n$ be generic homogeneous polynomials in $n$ variables of degrees $d_1,...,d_n$ respectively. We prove that if $\\nu$ is an integer satisfying ${\\sum_{i=1}^n d_i}-n+1-\\min\\{d_i\\}<\\nu,$ then all multivariate subresultants associated to the family $P_1,...,P_n$ in degree $\\nu$ are irreducible. We show that the lower bound is sharp. As a byproduct, we get a formula for computing the residual resultant of $\\binom{\\rho-\\nu +n-1}{n-1}$ smooth isolated points in $\\PP^{n-1}.$", "revisions": [ { "version": "v2", "updated": "2003-12-11T08:26:39.000Z" } ], "analyses": { "keywords": [ "irreducibility", "generic homogeneous polynomials", "lower bound", "residual resultant", "smooth isolated points" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9374B" } } }