{ "id": "math/0309328", "version": "v2", "published": "2003-09-19T18:19:19.000Z", "updated": "2003-09-26T16:04:34.000Z", "title": "The smoothness of Riemannian submersions with nonnegative sectional curvature", "authors": [ "Jianguo Cao", "Mei-Chi Shaw" ], "categories": [ "math.DG" ], "abstract": "Let $M^n$ be a complete, non-compact and $C^\\infty$-smooth Riemannian manifold with nonnegative sectional curvature. Suppose $\\Cal S$ is a soul of $M^n$. Then any distance non-increasing retraction $\\Psi: M^n \\to \\Cal S$ must give rise to a $C^\\infty$-smooth Riemannian submersion.", "revisions": [ { "version": "v2", "updated": "2003-09-26T16:04:34.000Z" } ], "analyses": { "subjects": [ "53C10" ], "keywords": [ "nonnegative sectional curvature", "smoothness", "smooth riemannian manifold", "smooth riemannian submersion", "distance non-increasing retraction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9328C" } } }