{ "id": "math/0309316", "version": "v2", "published": "2003-09-19T11:29:39.000Z", "updated": "2005-03-14T13:49:13.000Z", "title": "Topological equivalence of complex polynomials", "authors": [ "Arnaud Bodin", "Mihai Tibar" ], "comment": "14 pages, revised text for final version", "journal": "Adv. Math. 199 (2006), no.1, 136-150.", "doi": "10.1016/j.aim.2005.03.003", "categories": [ "math.AG", "math.GT" ], "abstract": "The following numerical control over the topological equivalence is proved: two complex polynomials in $n\\not= 3$ variables and with isolated singularities are topologically equivalent if one deforms into the other by a continuous family of polynomial functions $f_s \\colon \\mathbb{C}^n \\to \\mathbb{C}$ with isolated singularities such that the degree, the number of vanishing cycles and the number of atypical values are constant in the family.", "revisions": [ { "version": "v2", "updated": "2005-03-14T13:49:13.000Z" } ], "analyses": { "keywords": [ "complex polynomials", "topological equivalence", "isolated singularities", "polynomial functions", "topologically equivalent" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9316B" } } }