{ "id": "math/0309274", "version": "v1", "published": "2003-09-17T12:26:31.000Z", "updated": "2003-09-17T12:26:31.000Z", "title": "Towards a classification of Lorentzian holonomy groups. Part II: Semisimple, non-simple weak-Berger algebras", "authors": [ "Thomas Leistner" ], "comment": "13 pages", "journal": "J. Differential Geom. 76 (2007), no. 3, 423-484", "categories": [ "math.DG" ], "abstract": "The holonomy group of an (n+2)-dimensional simply-connected, indecomposable but non-irreducible Lorentzian manifold (M,h) is contained in the parabolic group $(\\mathbb{R} \\times SO(n))\\ltimes \\mathbb{R}^n$. The main ingredient of such a holonomy group is the SO(n)--projection $G:=pr_{SO(n)}(Hol_p(M,h))$ and one may ask whether it has to be a Riemannian holonomy group. In this paper we show that this is always the case, completing our results of the first part math.DG/0305139. We draw consequences for the existence of parallel spinors on Lorentzian manifolds.", "revisions": [ { "version": "v1", "updated": "2003-09-17T12:26:31.000Z" } ], "analyses": { "subjects": [ "53B30", "53C50", "53C27", "53C29" ], "keywords": [ "non-simple weak-berger algebras", "lorentzian holonomy groups", "classification", "semisimple", "riemannian holonomy group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9274L" } } }