{ "id": "math/0309265", "version": "v2", "published": "2003-09-16T17:02:12.000Z", "updated": "2003-09-17T21:34:14.000Z", "title": "Injectivity of the symmetric map for line bundles", "authors": [ "Montserrat Teixidor i Bigas" ], "comment": "To appear in Manuscripta Mathematica. No changes in the paper. Word \"generic\" added to the abstract", "categories": [ "math.AG" ], "abstract": "Let C be a generic non-singular curve of genus g defined over a field of characteristic different from 2. We show that for every line bundle on C of degree at most g+1, the natural product map S^2(H^0(L))\\to H^0(C,L^2) is injective. We also show that the bound on the degree of L is sharp.", "revisions": [ { "version": "v2", "updated": "2003-09-17T21:34:14.000Z" } ], "analyses": { "subjects": [ "14H60" ], "keywords": [ "line bundle", "symmetric map", "injectivity", "generic non-singular curve", "natural product map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9265B" } } }