{ "id": "math/0309223", "version": "v2", "published": "2003-09-13T16:59:03.000Z", "updated": "2003-10-01T10:10:55.000Z", "title": "Dimension via Waiting time and Recurrence", "authors": [ "S. Galatolo" ], "comment": "This replace the previous version. New recent references are added", "categories": [ "math.DS" ], "abstract": "Quantitative recurrence indicators are defined by measuring the first entrance time of the orbit of a point $x$ in a decreasing sequence of neighborhoods of another point $y$. It is proved that these recurrence indicators are a.e. greater or equal to the local dimension at $y$, then these recurrence indicators can be used to have a numerical upper bound on the local dimension of an invariant measure.", "revisions": [ { "version": "v2", "updated": "2003-10-01T10:10:55.000Z" } ], "analyses": { "subjects": [ "37B20", "37C45" ], "keywords": [ "waiting time", "local dimension", "first entrance time", "invariant measure", "quantitative recurrence indicators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9223G" } } }