{ "id": "math/0309150", "version": "v1", "published": "2003-09-08T17:15:01.000Z", "updated": "2003-09-08T17:15:01.000Z", "title": "Ribbon concordance of surface-knots via quandle cocycle invariants", "authors": [ "J. Scott Carter", "Masahico Saito", "Shin Satoh" ], "comment": "14 pages, eight figures, interesting applications", "categories": [ "math.GT", "math.QA" ], "abstract": "We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversed images.", "revisions": [ { "version": "v1", "updated": "2003-09-08T17:15:01.000Z" } ], "analyses": { "subjects": [ "57Q45", "57Q60", "57M25", "55N99" ], "keywords": [ "quandle cocycle invariants", "ribbon concordance", "surface-knot", "ribbon concordant", "necessary conditions" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9150C" } } }