{ "id": "math/0309101", "version": "v1", "published": "2003-09-05T16:38:18.000Z", "updated": "2003-09-05T16:38:18.000Z", "title": "The Urysohn universal metric space is homeomorphic to a Hilbert space", "authors": [ "Vladimir Uspenskij" ], "comment": "5 pages", "categories": [ "math.GN" ], "abstract": "The Urysohn universal metric space U is characterized up to isometry by the following properties: (1) U is complete and separable; (2) U contains an isometric copy of every separable metric space; (3) every isometry between two finite subsets of U can be extended to an isometry of U onto itself. We show that U is homeomorphic to the Hilbert space l_2 (or to the countable power of the real line).", "revisions": [ { "version": "v1", "updated": "2003-09-05T16:38:18.000Z" } ], "analyses": { "subjects": [ "54F65", "54C55", "54D70", "54E35", "54E50" ], "keywords": [ "urysohn universal metric space", "hilbert space", "homeomorphic", "isometric copy", "separable metric space" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9101U" } } }