{ "id": "math/0309011", "version": "v2", "published": "2003-08-31T20:35:05.000Z", "updated": "2004-04-27T00:29:03.000Z", "title": "Random walks on the torus with several generators", "authors": [ "Timothy Prescott", "Francis Edward Su" ], "comment": "10 pages; related work at http://www.math.hmc.edu/~su/papers.html", "journal": "Random Structures and Algorithms 25 (2004), 336-345.", "doi": "10.1002/rsa.20029", "categories": [ "math.PR" ], "abstract": "Our paper gives bounds for the rate of convergence for a class of random walks on the d-dimensional torus generated by a set of n vectors in R^d/Z^d. We give bounds on the discrepancy distance from Haar measure; our lower bound holds for all such walks, and if the generators arise from the rows of a \"badly approximable\" matrix, then there is a corresponding upper bound. The bounds are sharp for walks on the circle.", "revisions": [ { "version": "v2", "updated": "2004-04-27T00:29:03.000Z" } ], "analyses": { "subjects": [ "60B15", "11J13", "11K38" ], "keywords": [ "random walks", "lower bound holds", "generators arise", "haar measure", "corresponding upper bound" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......9011P" } } }