{ "id": "math/0308050", "version": "v3", "published": "2003-08-06T08:54:26.000Z", "updated": "2008-12-17T15:27:45.000Z", "title": "Singular 0/1-matrices, and the hyperplanes spanned by random 0/1-vectors", "authors": [ "Thomas Voigt", "Günter M. Ziegler" ], "comment": "9 pages", "journal": "Combinatorics, Probability & Computing, 15:463-471, 2006", "categories": [ "math.CO", "math.MG" ], "abstract": "Let $P(d)$ be the probability that a random 0/1-matrix of size $d \\times d$ is singular, and let $E(d)$ be the expected number of 0/1-vectors in the linear subspace spanned by d-1 random independent 0/1-vectors. (So $E(d)$ is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on $P(d)$ are equivalent to bounds on $E(d)$: \\[ P(d) = (2^{-d} E(d) + \\frac{d^2}{2^{d+1}}) (1 + o(1)). \\] We also report about computational experiments pertaining to these numbers.", "revisions": [ { "version": "v3", "updated": "2008-12-17T15:27:45.000Z" } ], "analyses": { "subjects": [ "15A52", "05B20", "05D40" ], "keywords": [ "hyperplanes", "expected number", "random independent", "random affine hyperplane", "cube vertices" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......8050V" } } }