{ "id": "math/0307273", "version": "v1", "published": "2003-07-20T04:12:08.000Z", "updated": "2003-07-20T04:12:08.000Z", "title": "Weierstraß type representation of timelike surfaces with constant mean curvature", "authors": [ "Josef Dorfmeister", "Junichi Inoguchi", "Magdalena Toda" ], "journal": "Differential Geometry and Integrable Systems, Contemporary Mathematics AMS, vol.308, 2002", "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "We derive a correspondence between (Lorentzian) harmonic maps into the pseudosphere $S_1^2$, with appropriate regularity conditions, and certain connection 1-forms. To these harmonic maps, we associate a representation of type Weierstrass, and we apply it to construct timelike surfaces with constant mean curvature.", "revisions": [ { "version": "v1", "updated": "2003-07-20T04:12:08.000Z" } ], "analyses": { "subjects": [ "53A10", "58E20" ], "keywords": [ "constant mean curvature", "type representation", "harmonic maps", "appropriate regularity conditions", "construct timelike surfaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......7273D" } } }