{ "id": "math/0307259", "version": "v2", "published": "2003-07-18T16:25:35.000Z", "updated": "2018-07-09T16:27:39.000Z", "title": "Conjugacies for Tiling Dynamical Systems", "authors": [ "Charles Holton", "Charles Radin", "Lorenzo Sadun" ], "comment": "Updated to version accepted for publication", "journal": "Communications in Mathematical Physics 254 (2005) 343-359", "categories": [ "math.DS", "math-ph", "math.MG", "math.MP" ], "abstract": "We consider tiling dynamical systems and topological conjugacies between them. We prove that the criterion of being finite type is invariant under topological conjugacy. For substitution tiling systems under rather general conditions, including the Penrose and pinwheel systems, we show that substitutions are invertible and that conjugacies are generalized sliding block codes.", "revisions": [ { "version": "v1", "updated": "2003-07-18T16:25:35.000Z", "comment": "Plain TeX, 19 pages, including 5 embedded figures", "journal": null, "doi": null }, { "version": "v2", "updated": "2018-07-09T16:27:39.000Z" } ], "analyses": { "subjects": [ "37B50", "52C23", "37C15", "37C80" ], "keywords": [ "tiling dynamical systems", "topological conjugacy", "finite type", "generalized sliding block codes", "general conditions" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "Plain TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......7259H" } } }