{ "id": "math/0307171", "version": "v1", "published": "2003-07-11T16:24:55.000Z", "updated": "2003-07-11T16:24:55.000Z", "title": "Once more about the 52 four-dimensional parallelotopes", "authors": [ "Michel Deza", "Viacheslav Grishukhin" ], "comment": "14 pages (submitted)", "categories": [ "math.MG", "math.CO" ], "abstract": "There are several works \\cite{De} (and \\cite{St}), \\cite{En}, \\cite{Co} and \\cite{Va} enumerating four-dimensional parallelotopes. In this work we give a new enumeration showing that any four-dimensional parallelotope is either a zonotope or the Minkowski sum of a zonotope with the regular 24-cell $\\{3,4,3\\}$. Each zonotopal parallelotope is the Minkowski sum of segments whose generating vectors form a unimodular system. There are exactly 17 four-dimensional unimodular systems. Hence, there are 17 four-dimensional zonotopal parallelotopes. Other 35 four-dimensional parallelotopes are: the regular 24-cell $\\{3,4,3\\}$ and 34 sums of the regular parallelotope with non-zero zonotopal parallelotopes. For the nontrivial enumerating of the 34 sums we use a theorem discribing necessary and sufficient conditions when the Minkowski sum of a parallelotope with a segment is a parallelotope.", "revisions": [ { "version": "v1", "updated": "2003-07-11T16:24:55.000Z" } ], "analyses": { "keywords": [ "minkowski sum", "non-zero zonotopal parallelotopes", "four-dimensional zonotopal parallelotopes", "four-dimensional unimodular systems", "theorem discribing necessary" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......7171D" } } }