{ "id": "math/0307107", "version": "v1", "published": "2003-07-09T07:56:57.000Z", "updated": "2003-07-09T07:56:57.000Z", "title": "Homomorphisms from mapping class groups", "authors": [ "William Harvey", "Mustafa Korkmaz" ], "comment": "11 pages, 2 pictures", "categories": [ "math.GT", "math.GR" ], "abstract": "This paper concerns rigidity of the mapping class groups. We show that any homomorphism $\\phi:{\\rm Mod}_g\\to {\\rm Mod}_h$ between mapping class groups of closed orientable surfaces with distinct genera $g>h$ is trivial if $g\\geq 3$ and has finite image for all $g\\geq 1$. Some implications are drawn for more general homomorphs of these groups.", "revisions": [ { "version": "v1", "updated": "2003-07-09T07:56:57.000Z" } ], "analyses": { "keywords": [ "mapping class groups", "homomorphism", "paper concerns rigidity", "distinct genera", "finite image" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......7107H" } } }