{ "id": "math/0307055", "version": "v2", "published": "2003-07-03T19:47:29.000Z", "updated": "2005-06-24T20:07:01.000Z", "title": "The Beckman-Quarles theorem for mappings from R^2 to F^2, where F is a subfield of a commutative field extending R", "authors": [ "Apoloniusz Tyszka" ], "comment": "LaTeX2e, 10 pages", "journal": "Abh. Math. Sem. Univ. Hamburg 74 (2004), 77-87", "categories": [ "math.MG" ], "abstract": "Let F be a subfield of a commutative field extending R. Let \\phi_2: F^2 \\times F^2 \\to F, \\phi_2((x_1,x_2),(y_1,y_2))=(x_1-y_1)^2+(x_2-y_2)^2. We say that f:R^2 \\to F^2 preserves distance d \\geq 0 if for each x,y \\in R^2 |x-y|=d implies \\phi_2(f(x),f(y))=d^2. We prove that each unit-distance preserving mapping f:R^2 \\to F^2 has a form I \\circ (\\rho,\\rho), where \\rho: R \\to F is a field homomorphism and I: F^2 \\to F^2 is an affine mapping with orthogonal linear part.", "revisions": [ { "version": "v2", "updated": "2005-06-24T20:07:01.000Z" } ], "analyses": { "subjects": [ "51M05" ], "keywords": [ "commutative field extending", "beckman-quarles theorem", "orthogonal linear part", "field homomorphism", "preserves distance" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......7055T" } } }