{ "id": "math/0306282", "version": "v1", "published": "2003-06-19T08:12:11.000Z", "updated": "2003-06-19T08:12:11.000Z", "title": "Stable sets, hyperbolicity and dimension", "authors": [ "Rasul Shafikov", "Christian Wolf" ], "categories": [ "math.DS" ], "abstract": "In this note we derive an upper bound for the Hausdorff dimension of the stable set of a hyperbolic set $\\Lambda$ of a $C^2$ diffeomorphisms on a $n$-dimensional manifold. As a consequence we obtain that $\\dim_H W^s(\\Lambda)=n$ is equivalent to the existence of a SRB-measure. We also discuss related results in the case of expanding maps.", "revisions": [ { "version": "v1", "updated": "2003-06-19T08:12:11.000Z" } ], "analyses": { "subjects": [ "37C45" ], "keywords": [ "stable set", "hyperbolicity", "upper bound", "hausdorff dimension", "hyperbolic set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6282S" } } }