{ "id": "math/0306240", "version": "v1", "published": "2003-06-16T17:34:27.000Z", "updated": "2003-06-16T17:34:27.000Z", "title": "Bounds and definability in polynomial rings", "authors": [ "Matthias Aschenbrenner" ], "comment": "36 pages", "categories": [ "math.AC", "math.LO" ], "abstract": "We study questions around the existence of bounds and the dependence on parameters for linear-algebraic problems in polynomial rings over rings of an arithmetic flavor.In particular, we show that the module of syzygies of polynomials $f_1,...,f_n\\in R[X_1,...,X_N]$ with coefficients in a Pr\\\"ufer domain $R$ can be generated by elements whose degrees are bounded by a number only depending on $N$, $n$ and the degree of the $f_j$. This implies that if $R$ is a B\\'ezout domain, then the generators can be parametrized in terms of the coefficients of $f_1,...,f_n$ using the ring operations and a certain division function, uniformly in $R$.", "revisions": [ { "version": "v1", "updated": "2003-06-16T17:34:27.000Z" } ], "analyses": { "subjects": [ "13D02", "13F05", "13L05" ], "keywords": [ "polynomial rings", "definability", "arithmetic flavor", "linear-algebraic problems", "coefficients" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6240A" } } }