{ "id": "math/0306233", "version": "v1", "published": "2003-06-16T01:03:01.000Z", "updated": "2003-06-16T01:03:01.000Z", "title": "The best bounds of harmonic sequence", "authors": [ "Chao-Ping Chen", "Feng Qi" ], "comment": "5 pages", "journal": "Chao-Ping Chen and Feng Qi, The best bounds of the $n$-th harmonic number, Global Journal of Applied Mathematics and Mathematical Sciences 1 (2008), no. 1, 41--49", "categories": [ "math.CA", "math.FA" ], "abstract": "For any natural number $n\\in\\mathbb{N}$, $ \\frac{1}{2n+\\frac1{1-\\gamma}-2}\\le \\sum_{i=1}^n\\frac1i-\\ln n-\\gamma<\\frac{1}{2n+\\frac13}, $ where $\\gamma=0.57721566490153286...m$ denotes Euler's constant. The constants $\\frac{1}{1-\\gamma}-2$ and $\\frac13$ are the best possible. As by-products, two double inequalities of the digamma and trigamma functions are established.", "revisions": [ { "version": "v1", "updated": "2003-06-16T01:03:01.000Z" } ], "analyses": { "subjects": [ "26D15", "33B15" ], "keywords": [ "harmonic sequence", "best bounds", "denotes eulers constant", "natural number", "trigamma functions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6233C" } } }