{ "id": "math/0306218", "version": "v1", "published": "2003-06-13T12:24:37.000Z", "updated": "2003-06-13T12:24:37.000Z", "title": "Convergence of an exact quantization scheme", "authors": [ "Artur Avila" ], "comment": "10 pages, no figures, first version", "doi": "10.1007/s00220-004-1112-9", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "It has been shown by Voros \\cite {V} that the spectrum of the one-dimensional homogeneous anharmonic oscillator (Schr\\\"odinger operator with potential $q^{2M}$, $M>1$) is a fixed point of an explicit non-linear transformation. We show that this fixed point is globally and exponentially attractive in spaces of properly normalized sequences.", "revisions": [ { "version": "v1", "updated": "2003-06-13T12:24:37.000Z" } ], "analyses": { "keywords": [ "exact quantization scheme", "convergence", "explicit non-linear transformation", "one-dimensional homogeneous anharmonic oscillator", "fixed point" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2004, "volume": 249, "number": 2, "pages": 305 }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004CMaPh.249..305A" } } }