{ "id": "math/0306160", "version": "v1", "published": "2003-06-10T13:07:27.000Z", "updated": "2003-06-10T13:07:27.000Z", "title": "Stability of solutions of quasilinear parabolic equations", "authors": [ "Giuseppe Maria Coclite", "Helge Holden" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "We bound the difference between solutions $u$ and $v$ of $u_t = a\\Delta u+\\Div_x f+h$ and $v_t = b\\Delta v+\\Div_x g+k$ with initial data $\\phi$ and $ \\psi$, respectively, by $\\Vert u(t,\\cdot)-v(t,\\cdot)\\Vert_{L^p(E)}\\le A_E(t)\\Vert \\phi-\\psi\\Vert_{L^\\infty(\\R^n)}^{2\\rho_p}+ B(t)(\\Vert a-b\\Vert_{\\infty}+ \\Vert \\nabla_x\\cdot f-\\nabla_x\\cdot g\\Vert_{\\infty}+ \\Vert f_u-g_u\\Vert_{\\infty} + \\Vert h-k\\Vert_{\\infty})^{\\rho_p} \\abs{E}^{\\eta_p}$. Here all functions $a$, $f$, and $h$ are smooth and bounded, and may depend on $u$, $x\\in\\R^n$, and $t$. The functions $a$ and $h$ may in addition depend on $\\nabla u$. Identical assumptions hold for the functions that determine the solutions $v$. Furthermore, $E\\subset\\R^n$ is assumed to be a bounded set, and $\\rho_p$ and $\\eta_p$ are fractions that depend on $n$ and $p$. The diffusion coefficients $a$ and $b$ are assumed to be strictly positive and the initial data are smooth.", "revisions": [ { "version": "v1", "updated": "2003-06-10T13:07:27.000Z" } ], "analyses": { "keywords": [ "quasilinear parabolic equations", "initial data", "diffusion coefficients", "addition depend", "identical assumptions hold" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6160C" } } }