{ "id": "math/0306141", "version": "v1", "published": "2003-06-08T21:16:17.000Z", "updated": "2003-06-08T21:16:17.000Z", "title": "Some Properties of the Distance Function and a Conjecture of De Giorgi", "authors": [ "Manolo Eminenti", "Carlo Mantegazza" ], "journal": "J. Geom. Anal. 14 (2004), no. 2, 267-279", "categories": [ "math.AP", "math.FA" ], "abstract": "We analyse the geometric properties of the high derivatives of the distance function from a submanifold of the Euclidean space. In particular, we show some relations with the second fundamental form and its covariant derivatives of independent interest. As an application we prove a conjecture of Ennio De Giorgi on the evolution of submanifolds of the Euclidean space by the gradient of functionals depending on the derivatives of the distance function.", "revisions": [ { "version": "v1", "updated": "2003-06-08T21:16:17.000Z" } ], "analyses": { "subjects": [ "53A07", "53A55" ], "keywords": [ "distance function", "conjecture", "euclidean space", "second fundamental form", "geometric properties" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6141E" } } }