{ "id": "math/0306105", "version": "v2", "published": "2003-06-05T17:49:56.000Z", "updated": "2004-11-21T10:47:06.000Z", "title": "A bound for the number of automorphisms of an arithmetic Riemann surface", "authors": [ "M. Belolipetsky", "G. A. Jones" ], "comment": "11 pages, to appear in Math. Proc. Camb. Phil. Soc", "categories": [ "math.GR", "math.AG" ], "abstract": "We show that for every g > 1 there is a compact arithmetic Riemann surface of genus g with at least 4(g-1) automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24.", "revisions": [ { "version": "v2", "updated": "2004-11-21T10:47:06.000Z" } ], "analyses": { "subjects": [ "20F34", "30F10", "14G35" ], "keywords": [ "automorphisms", "compact arithmetic riemann surface", "lower bound" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......6105B" } } }