{ "id": "math/0305427", "version": "v1", "published": "2003-05-29T18:27:11.000Z", "updated": "2003-05-29T18:27:11.000Z", "title": "Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds", "authors": [ "Daniel Azagra", "Juan Ferrera", "Fernando Lopez-Mesas" ], "comment": "46 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We establish some perturbed minimization principles, and we develop a theory of subdifferential calculus, for functions defined on Riemannian manifolds. Then we apply these results to show existence and uniqueness of viscosity solutions to Hamilton-Jacobi equations defined on Riemannian manifolds.", "revisions": [ { "version": "v1", "updated": "2003-05-29T18:27:11.000Z" } ], "analyses": { "subjects": [ "49J52", "58E30" ], "keywords": [ "riemannian manifolds", "nonsmooth analysis", "perturbed minimization principles", "subdifferential calculus", "viscosity solutions" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5427A" } } }