{ "id": "math/0305331", "version": "v3", "published": "2003-05-23T13:53:22.000Z", "updated": "2004-10-25T16:32:39.000Z", "title": "Quantitative functional calculus in Sobolev spaces", "authors": [ "Carlo Morosi", "Livio Pizzocchero" ], "comment": "LaTex, 37 pages. Final version, differing only by minor typographical changes from the versions of May 23, 2003 and March 8, 2004", "journal": "Journal of Function Spaces and Applications (JFSA) 2 (2004), 279-321", "categories": [ "math.FA", "math-ph", "math.MP" ], "abstract": "In the framework of Sobolev (Bessel potential) spaces $H^n(\\reali^d, \\reali {or} \\complessi)$, we consider the nonlinear Nemytskij operator sending a function $x \\in \\reali^d \\mapsto f(x)$ into a composite function $x \\in \\reali^d \\mapsto G(f(x), x)$. Assuming sufficient smoothness for $G$, we give a \"tame\" bound on the $H^n$ norm of this composite function in terms of a linear function of the $H^n$ norm of $f$, with a coefficient depending on $G$ and on the $H^a$ norm of $f$, for all integers $n, a, d$ with $a > d/2$. In comparison with previous results on this subject, our bound is fully explicit, allowing to estimate quantitatively the $H^n$ norm of the function $x \\mapsto G(f(x),x)$. When applied to the case $G(f(x), x) = f^2(x)$, this bound agrees with a previous result of ours on the pointwise product of functions in Sobolev spaces.", "revisions": [ { "version": "v3", "updated": "2004-10-25T16:32:39.000Z" } ], "analyses": { "subjects": [ "46E35", "26D10", "47A60" ], "keywords": [ "quantitative functional calculus", "sobolev spaces", "composite function", "nonlinear nemytskij operator sending", "assuming sufficient smoothness" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5331M" } } }