{ "id": "math/0305286", "version": "v2", "published": "2003-05-20T12:44:37.000Z", "updated": "2003-12-03T02:37:18.000Z", "title": "F-singularities of pairs and Inversion of Adjunction of arbitrary codimension", "authors": [ "Shunsuke Takagi" ], "comment": "21 pages, AMS-LaTeX; v.2: minor changes, to appear in Invent. Math", "doi": "10.1007/s00222-003-0350-3", "categories": [ "math.AG", "math.AC" ], "abstract": "We generalize the notions of F-regular and F-pure rings to pairs $(R,\\a^t)$ of rings $R$ and ideals $\\a \\subset R$ with real exponent $t > 0$, and investigate these properties. These ``F-singularities of pairs'' correspond to singularities of pairs of arbitrary codimension in birational geometry. Via this correspondence, we prove Inversion of Adjunction of arbitrary codimension, which states that for a pair $(X,Y)$ of a smooth variety $X$ and a closed subscheme $Y \\subsetneq X$, if the restriction $(Z, Y|_Z)$ to a normal $\\Q$-Gorenstein closed subvariety $Z \\subsetneq X$ is klt (resp. lc), then the pair $(X,Y+Z)$ is plt (resp. lc) near $Z$.", "revisions": [ { "version": "v2", "updated": "2003-12-03T02:37:18.000Z" } ], "analyses": { "subjects": [ "13A35", "14B05", "14E15", "14E30" ], "keywords": [ "arbitrary codimension", "f-singularities", "adjunction", "gorenstein closed subvariety", "f-pure rings" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2004, "month": "Jul", "volume": 157, "number": 1, "pages": 123 }, "note": { "typesetting": "LaTeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004InMat.157..123T" } } }