{ "id": "math/0305264", "version": "v1", "published": "2003-05-19T07:14:59.000Z", "updated": "2003-05-19T07:14:59.000Z", "title": "KAM Theorem for Gevrey Hamiltonians", "authors": [ "Georgi Popov" ], "categories": [ "math.DS" ], "abstract": "We consider Gevrey perturbations $H$ of a completely integrable Gevrey Hamiltonian $H_0$. Given a Cantor set $\\Omega_\\kappa$ defined by a Diophantine condition, we find a family of KAM invariant tori of $H$ with frequencies $\\omega\\in \\Omega_\\kappa$ which is Gevrey smooth in a Whitney sense. Moreover, we obtain a symplectic Gevrey normal form of the Hamiltonian in a neighborhood of the union $\\Lambda$ of the invariant tori. This leads to effective stability of the quasiperiodic motion near $\\Lambda$.", "revisions": [ { "version": "v1", "updated": "2003-05-19T07:14:59.000Z" } ], "analyses": { "keywords": [ "kam theorem", "symplectic gevrey normal form", "kam invariant tori", "whitney sense", "cantor set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5264P" } } }