{ "id": "math/0305250", "version": "v1", "published": "2003-05-17T15:06:38.000Z", "updated": "2003-05-17T15:06:38.000Z", "title": "Heisenberg groups in algebraic topology", "authors": [ "Jack Morava" ], "comment": "To appear in the Segal Festschrift", "journal": "Topology, Geometry and Quantum Field Theory, 235 - 246, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004", "categories": [ "math.AT", "math.QA" ], "abstract": "We study the Madsen-Tillmann spectrum $\\C P^\\infty_{-1}$ as a quotient of the Mahowald pro-object $\\C P^{\\infty}_{-\\infty}$, which is closely related to the Tate cohomology of circle actions. That theory has an associated symplectic structure, whose symmetries define the Virasoro operations on the cohomology of moduli space constructed by Kontsevich and Witten.", "revisions": [ { "version": "v1", "updated": "2003-05-17T15:06:38.000Z" } ], "analyses": { "subjects": [ "19Dxx", "57Rxx", "83Cxx" ], "keywords": [ "algebraic topology", "heisenberg groups", "mahowald pro-object", "tate cohomology", "moduli space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5250M" } } }