{ "id": "math/0305161", "version": "v1", "published": "2003-05-12T01:52:04.000Z", "updated": "2003-05-12T01:52:04.000Z", "title": "Graphs without repeated cycle lengths", "authors": [ "Chunhui Lai" ], "comment": "5 pages", "journal": "Australasian Journal of Combinatorics 27 2003 101-105", "categories": [ "math.CO" ], "abstract": "In 1975, P. Erd\\\"{o}s proposed the problem of determining the maximum number $f(n)$ of edges in a graph of $n$ vertices in which any two cycles are of different lengths. In this paper, it is proved that $$f(n)\\geq n+36t$$ for $t=1260r+169 (r\\geq 1)$ and $n \\geq 540t^{2}+{175811/2}t+{7989/2}$. Consequently, $\\liminf\\sb {n \\to \\infty} {f(n)-n \\over \\sqrt n} \\geq \\sqrt {2 + {2 \\over 5}}.$ We make the following conjecture: \\par \\bigskip \\noindent{\\bf Conjecture.} $$\\lim_{n \\to \\infty} {f(n)-n\\over \\sqrt n}=\\sqrt {2.4}.$$", "revisions": [ { "version": "v1", "updated": "2003-05-12T01:52:04.000Z" } ], "analyses": { "subjects": [ "05C38", "05C35" ], "keywords": [ "repeated cycle lengths", "conjecture", "maximum number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5161L" } } }