{ "id": "math/0305139", "version": "v1", "published": "2003-05-09T14:34:02.000Z", "updated": "2003-05-09T14:34:02.000Z", "title": "Towards a classification of Lorentzian holonomy groups", "authors": [ "Thomas Leistner" ], "comment": "73 pages, 3 figures", "journal": "J. Differential Geom. 76 (2007), no. 3, 423-484", "categories": [ "math.DG" ], "abstract": "If the holonomy representation of an $(n+2)$--dimensional simply-connected Lorentzian manifold $(M,h)$ admits a degenerate invariant subspace its holonomy group is contained in the parabolic group $(\\mathbb{R} \\times SO(n))\\ltimes \\mathbb{R}^n$. The main ingredient of such a holonomy group is the SO(n)--projection $G:=pr_{SO(n)}(Hol_p(M,h))$ and one may ask whether it has to be a Riemannian holonomy group. In this paper we show that this is the case if $G\\subset U(n/2)$ or if the irreducible acting components of $G$ are simple.", "revisions": [ { "version": "v1", "updated": "2003-05-09T14:34:02.000Z" } ], "analyses": { "subjects": [ "53Cxx", "53Bxx" ], "keywords": [ "lorentzian holonomy groups", "classification", "riemannian holonomy group", "dimensional simply-connected lorentzian manifold", "degenerate invariant subspace" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 73, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......5139L" } } }